InSight: Mars Weather Service API

(Last Updated: 8/28/2019)

NASA's InSight Mars lander takes continuous weather measurements (temperature, wind, pressure) on the surface of Mars at Elysium Planitia, a flat, smooth plain near Mars' equator. Summaries of these data are available at https://mars.nasa.gov/insight/weather/.

This API provides per-Sol summary data for each of the last seven available Sols (Martian Days). As more data from a particular Sol are downlinked from the spacecraft (sometimes several days later), these values are recalculated, and consequently may change as more data are received on Earth.

This API is maintained and provided by NASA Jet Propulsion Laboratory and Cornell University. If you find bugs in this API, please use the contact form found at https://mars.nasa.gov/feedback/. The rate limit for this API is every hour no more than 2000 hits for each individual IP.

Defining the Data

The summary data are provided as an object in a JSON stream, a formal definition of JSON is RFC 7159. Appendix A contains an abridged, typical JSON stream for this API as an example.

API URL

https://api.nasa.gov/insight_weather/?api_key=DEMO_KEY&feedtype=json&ver=1.0

Quick start

Object keys are indicated by blue text

If we assume the entire JSON object that is returned by the API is in a variable named JSO

Get a top-level Sol key from the top-level key sol_keys, put it in a variable named sol

- Javascript: JSO.sol_keys[0] through JSO.sol_keys[6]
- Some other languages (e.g. Python), typical:
 - JSO[sol_keys][0] through JSO[sol_keys][6]
 - assumes seven Sols are present

Per-Sol average values, linear sensors

- JSO[sol].AT.av - atmospheric temperature, degrees Celsius
- JSO[sol].PRE.av - atmospheric pressure, Pascals
- JSO[sol].HWS.av - horizontal wind speed, metres per second

Per-sol 16-wind compass point of most common wind direction e.g. N for North or ESE for East-SouthEast

- JSO[sol].WD.most_common.compass_point
Top-level keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><SOL></td>
<td>Object; key is a string of one or more decimal digits</td>
</tr>
<tr>
<td>E.g. “259”</td>
<td>Object contains summary data for Sol <SOL> e.g. “259”: {...} => summary data for Sol 259</td>
</tr>
<tr>
<td>sol_keys</td>
<td>Array of strings e.g. [“259”, “260”, “…”, “265”]</td>
</tr>
<tr>
<td></td>
<td>Sols, as strings, with enough data in at least one channel (temperature, pressure or wind) to meet validity criteria. This array indicates which top-level <SOL> keys, described above, are present.</td>
</tr>
<tr>
<td>validity_checks</td>
<td>Object.</td>
</tr>
<tr>
<td></td>
<td>Provenance of evaluations whether enough data are present to adequately represent each Sol. The criterion is at least one sample present in 18, out of 24, hours in a Sol, for each sample.</td>
</tr>
<tr>
<td></td>
<td>N.B. an “hour” refers to a martian hour i.e. one-twenty-fourth of a Sol</td>
</tr>
</tbody>
</table>

Per-Sol weather data object (key = <SOL>)

- N.B. a Sol will be present at the top level, and in the sol_keys object, if there is at least one sensor with data for that Sol that meet the validity criterion
- N.B. only data from sensors that meet the validity criterion will be present under each Sol
 - Data from all sensors (AT; HWS; PRE; WD) may not be present under each Sol at the top level
 - Data from at least one sensor will be present under each Sol at the top level

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Object; per-Sol atmospheric temperature sensor summary data</td>
</tr>
<tr>
<td>HWS</td>
<td>Object; per-Sol horizontal wind speed sensor summary data</td>
</tr>
<tr>
<td>PRE</td>
<td>Object; per-Sol atmospheric pressure sensor summary data</td>
</tr>
<tr>
<td>WD</td>
<td>Object; per-Sol wind direction sensor summary data</td>
</tr>
<tr>
<td>Season</td>
<td>String; per-Sol season on Mars; one of [“winter”, “spring”, “summer”, “fall”]</td>
</tr>
<tr>
<td>First.UTC</td>
<td>Time of first datum, of any sensor, for the Sol (UTC; YYYY-MM-DDTHH:MM:SSZ)</td>
</tr>
<tr>
<td>Last.UTC</td>
<td>Time of last datum, of any sensor, for the Sol (UTC; YYYY-MM-DDTHH:MM:SSZ)</td>
</tr>
</tbody>
</table>
Per-Sol, per-sensor data object (top-level key = AT or HWS or PRE)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>av</td>
<td>Average of samples over the Sol (°F for AT; m/s for HWS; Pa for PRE)</td>
</tr>
<tr>
<td>ct</td>
<td>Total number of recorded samples over the Sol</td>
</tr>
<tr>
<td>mn</td>
<td>Minimum data sample over the sol (same units as av)</td>
</tr>
<tr>
<td>mx</td>
<td>Maximum data sample over the sol (same units as av)</td>
</tr>
</tbody>
</table>

Per-Sol, per-sensor data object for wind direction (top-level key = WD)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
</table>
| <compass_pt_no> | Object; key is a string of one or two decimal digits indicating the ordinal of a 16-wind compass rose from North clockwise, e.g. “1”, “2”, …, “16”
 N.B. These data could be used to create a wind rose histogram e.g. see this website. |
| most_common | Object or null; usually duplicates whichever of the <compass_pt_no> objects has the highest count (ct)
 The most_common key will always be present in any Sol, but it may have the value null if the wind direction data for that Sol do not pass the validity checks. |

Per-Sol wind direction compass point object (key <compass_pt_no> or most_common in WD)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
</table>
| compass_degrees | Number; the compass direction of the center of the compass point; degrees
 ● N.B. the wind is blowing from this direction ±11.25° |
| compass_point | String; the name of the compass point e.g. “N” for North, or “ESE” for East-SouthEast |
| compass_right | Number; the positive-right (positive-east), horizontal component of a unit vector indicating the direction of the compass point |
| compass_up | Number; the positive–up (positive-north), vertical component of a unit vector indicating the direction of the compass point |
| ct | Number; the number of samples for the Sol in the 11.25° around this compass point |
Provenance of validity checks (top-level key “validity_checks”; see Caveats below)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><SOL></td>
<td>Object; key is a string of one or more decimal digits</td>
</tr>
<tr>
<td></td>
<td>There will typically be more Sol keys here than in the top-level <SOL> keys</td>
</tr>
<tr>
<td>sol_hours_required</td>
<td>Number; typically 18; number of hours with at least one sensor datum required for that Sol's sensor data to be considered valid</td>
</tr>
<tr>
<td>sols_checked</td>
<td>Array of strings e.g. ["258","260","...","265"]</td>
</tr>
<tr>
<td></td>
<td>Sols, as strings, that were checked against the validity criterion. This array indicates which <SOL> keys are present in the validity_checks object.</td>
</tr>
</tbody>
</table>

Per-Sol validity checks (key <SOL> in top-level object “validity_checks”; see Caveats below)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Object; per-Sol validity check for atmospheric temperature sensor</td>
</tr>
<tr>
<td>HWS</td>
<td>Object; per-Sol validity check for horizontal wind speed sensor</td>
</tr>
<tr>
<td>PRE</td>
<td>Object; per-Sol validity check for atmospheric pressure sensor</td>
</tr>
<tr>
<td>WD</td>
<td>Object; per-Sol validity check for wind direction sensor</td>
</tr>
</tbody>
</table>

Per-Sol, per-sensor validity check (key AT or HWS or PRE or WD in previous table; see Caveats below)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sol_hours_with_data</td>
<td>Array of numbers; number indicating which hours have at least one datum recorded for this Sol and sensor; values are 0 through 23.</td>
</tr>
<tr>
<td>valid</td>
<td>Boolean value; true if there are at least <sol_hours_required> hours (typically 18) with at least one datum recorded for this Sol and sensor.</td>
</tr>
</tbody>
</table>

Caveats

- Everything under validity_checks key is for debugging by API providers; these data will not be of interest to typical Mars Weather Data API consumers.
Appendix A
Sample JSON data, abridged, re-arranged, and annotated

N.B. all **blue text** delimited on the left by **blue #s** are annotations

```json
{
  "sol_keys": [ "259", "260", "261", "262", "263", "264", "265" ],

  "259": {
    "AT": { "av": -71.233, "ct": 326642, "mn": -101.024, "mx": -27.149 },

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 },

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 },

    "WD": {

      "most_common": { "compass_degrees": 202.5, "compass_point": "SSW", "compass_right": -0.382683432365, "compass_up": -0.923879532511, "ct": 28551 },

      "8": { "compass_degrees": 180.0, "compass_point": "S", "compass_right": 0.0, "compass_up": -1.0, "ct": 17699 },

      "9": { "compass_degrees": 202.5, "compass_point": "SSW", "compass_right": -0.382683432365, "compass_up": -0.923879532511, "ct": 28551 },

      "10": { "compass_degrees": 225.0, "compass_point": "SW", "compass_right": -0.707106781187, "compass_up": -0.707106781187, "ct": 27124 }
    },

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  },

  "260": {

    "AT": { "av": -75.95, "ct": 300789, "mn": -101.715, "mx": -28.634 },

    "PRE": { "av": 762.462, "ct": 149206, "mn": 741.1254, "mx": 777.796 },

    "WD": { "most_common": null }

    "First_UTC": "2019-08-20T08:43:34Z", "Last_UTC": "2019-08-21T09:23:09Z", "Season": "winter"
  },

  "261": {

    "AT": { "av": -71.024, "ct": 326642, "mn": -101.024, "mx": -27.149 },

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 },

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 },

    "WD": {

      "most_common": { "compass_degrees": 202.5, "compass_point": "SSW", "compass_right": -0.382683432365, "compass_up": -0.923879532511, "ct": 28551 },

      "8": { "compass_degrees": 180.0, "compass_point": "S", "compass_right": 0.0, "compass_up": -1.0, "ct": 17699 },

      "9": { "compass_degrees": 202.5, "compass_point": "SSW", "compass_right": -0.382683432365, "compass_up": -0.923879532511, "ct": 28551 },

      "10": { "compass_degrees": 225.0, "compass_point": "SW", "compass_right": -0.707106781187, "compass_up": -0.707106781187, "ct": 27124 }
    },

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  },

  "262": {

    "AT": { "av": -71.024, "ct": 326642, "mn": -101.024, "mx": -27.149 },

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 }

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 }

    "WD": { "most_common": null }

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  },

  "263": {

    "AT": { "av": -71.024, "ct": 326642, "mn": -101.024, "mx": -27.149 }

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 }

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 }

    "WD": { "most_common": null }

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  },

  "264": {

    "AT": { "av": -71.024, "ct": 326642, "mn": -101.024, "mx": -27.149 }

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 }

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 }

    "WD": { "most_common": null }

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  },

  "265": {

    "AT": { "av": -71.024, "ct": 326642, "mn": -101.024, "mx": -27.149 }

    "HWS": { "av": 4.35, "ct": 154146, "mn": 0.156, "mx": 17.617 }

    "PRE": { "av": 761.006, "ct": 163012, "mn": 742.1498, "mx": 780.3891 }

    "WD": { "most_common": null }

    "First_UTC": "2019-08-19T08:34:59Z", "Last_UTC": "2019-08-20T08:43:34Z", "Season": "winter"
  }
}
```

Start of JSON stream

Array of Sols with data

Start of summary data for Sol 259

Atmospheric temperature data for Sol 259

Horizontal wind speed data for Sol 259

Pressure data for Sol 259

Wind direction summary for Sol 259

N.B. only a subset of the WD keys are shown in this sample

Wind direction data for most common compass point

N.B. count (key "ct") is 28551, which is the number of WD readings in this compass point

Wind direction data for compass point 8=South; count is less than that for most common point; points 1-7 and 11-16 are excluded in this example to save space, but the counts could be used to display a wind rose histogram c.f. [this website](#).

Wind direction data for compass point 9=SSW

N.B. count (key "ct") is 28551, which matches that of the most common key above i.e. this is the same point

Miscellaneous provance: UTC range; season.

Start of summary data for Sol 260

N.B. Sol 260 has no valid data for HWS, and WD has null for most_common; see validity_checks below for why
Summary data for Sols 261 and later are excluded in this example.

Start of validity check data

Input parameter to validity check algorithm: sensor data need to be present in at least 18 of 24 (martian) hours of a Sol for summary data to be present for that sensor in that Sol above.

N.B. to get seven Sols of data, eight days are checked, because the most recent Sol is usually incomplete. As it turns out in this example, there are data available for at least one sensor for all Sols from 265 back to 259, so summary data for Sol 258 are not included above.

Validity check result data for Sol 258 are present, even though its summary data are not used.

```json
validity_checks: {
  sol_hours_required: 18,

  sols_checked: ["258","259","260","261","262","263","264","265"]
}
```

```json
"258": {
  "AT": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "HWS": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "PRE": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "WD": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true }
},

"259": {
  "AT": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "HWS": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "PRE": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "WD": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true }
},

"260": {
  "AT": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "HWS": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "PRE": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true },
  "WD": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23], "valid": true }
}
```

Start of validity check result data for Sol 259; data are present for all 24 hours for all sensors, so all sensor keys (AT, HWS, PRE, WD) have valid = true.
"AT": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,23], "valid": true },

"HWS": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,15,16,17,18,19,20,21,22,23], "valid": false },

"PRE": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,23], "valid": true },

"WD": { "sol_hours_with_data": [0,1,2,3,4,5,6,7,15,16,17,18,19,20,21,22,23], "valid": false }

"261": {...},
"262": {...},
"263": {...},
"264": {...},
"265": {...}

AT data are present in 22 of 24 hours, which is greater than 18 (sol_hours_required) above, so valid = true, and AT summary data are present for Sol 260 above

HWS data are present in 17 of 24 hours, which is less than 18 (sol_hours_required) above, so valid = false, and HWS summary data are not present for Sol 260 above

PRE data are present in 22 of 24 hours, so valid = true

WE data are present in 17 of 24 hours, so valid = false

Validity check result data for Sols 261 and later are excluded for this example

End of validity_check result data

End of JSON stream